Introduction to SystemDotNet

By Carsten Wil ff (wul ff@et.ntnu.no)

Mixed-Signal Simulation

For a long time simulation of integrated circuits was divided into two camps; one for
analog simulation that used SPICE and one for digital simulation that used VHDL or
Verilog. In the resent years a need for behavioral simulation of large mixed-signal
systems has spanned a new class of smulators. The major contenders are SystemC,
VHDL-AMS and Verilog-AMS. We use SystemC for behavioral simulation of mixed-
signal systems in several courses, but since SystemC is based on C++ the learning
threshold for a new student is quite high. With much experience with .NET technology
and the supremacy of this technology when it comes to seamless integration between
windows application and web application we decided to create a new mixed-signal
simulator. The simulator is based on the principles of SystemC where the simulator is
compiled with the circuit description. It is also based on the article “.NET framework - a
solution for the next generation tools for system-level modeling and simulation” [1].

SystemDotNet Simulation Core

The simulation core can roughly be divided into 4 portions a shown in Figure 1; Event
gueue and simulator control, signals, modules and output writers. The classes in Figure 1
are the essential classes in the simulation core.

) N)
5 =
22 ‘ .
o5 EventQueue ¥ ProcessAttribute ¥
= 8 Class Class a
&8 J s
3 v 8
o £ Simulator ¥ &
i 5 Class gERizzaazazazsssssessessasesenases,
i ModuleBase ¥
\) /| | Class
() S A \J
i SignalBase ¥ i |
E Class H (| ~ (\
: y Logger<T> 3
S e Gr
_/
?'SIQI'IE” |
Signal<T> ¥ SignalCollection<T> ¥ Report 3
Class Class Class
> &
g 2
-(% ?IRunnable =
>
TimeEvent<T> ¥ SignalValueHolder.. ¥ 1SignalWriter ¥ £
Class Class Interface O
?IS\gnaIWr\ler
IRunnable ¥ ISignal ¥ VedWriter ¥
Interface Interface Class
/ AN N

Figure 1 Simulation core overview

Basic principal of simulation core

In an event driven simulator we have three main objects; event queue, signals and stuff
that happens when signals change. Think of the event queue as grand old man that has
full control over when things should change. Every time we write to a signal we ask the
old man to put the change into his queue and execute it at the right time. The old man has
a master clock that everything follows, the algorithm used in SystemDotNet can be seen
in Figure 2. We start by setting the current time to next time, the first time this happens
the next time is 0. We then check if there are any events scheduled for this time step, if
there are we remove them from the event queue en execute them. Next we find the next
time step if there is one and the process starts all over again. Unlike most event driven
simulators the event queue in SystemDotNet is not a sorted list. The event queue is a
named collection. Figure 3 shows visualization. A conventional queue contains events
that are inserted sorted into the queue, for each step the simulator pops an event and runs
it. In SystemDotNet all events that happen at the same time are stored in alist. Thislist is
referenced by the time the event is to occur. We have experimented with a conventional
gueue but it did not give a speed advantage for the circuits we tried.

Star }\‘

Current time step = next time steg

L

"/'H Are there any event:)
. scheduled for this timestey

Yes
PN Nc N
/Is there another time
ster %
No ‘ e i N
-— Remove events from the queue and
execute then
Find next time steg

Stog

Figure 2 SystemDotNet algorithm

Conventiona

e e e = e [

In SystemDotNel

1Cns 1Cng ‘ 1Cng "X

21ns 21ng ‘ 21ns J

2Cns 2Cns

3Cns 3Cns ‘ 3Cns ‘

Figure 3 Event queue principle

The objects in the event queue are of type Ti neEvent , which inherit | Runnabl e. this class
holds a si gnal val ueHol der and an object. Si gnal Val ueHol der iS a class used in Si gnal

and si gnal Col | ecti on to hold the value of the signal. When the Ti neevent is executed the
value of si gnal val ueHol der IS Set to the object. This fires a changed event on the signal
where the value has changed. This event must in some way be wired to
processes/methods (stuff that happens when a signal change). In SystemDotNet this event

listening can be done in two ways; direct or indirect. To better understand lets look at two
modules that use these methods. Modules are classes that define a circuit cell (or block).
The rules for Modules are; they must inherit modul eBase or a subclass of mdul eBase and
all signals available outside the class (often called ports) must be public fields. The code
is show in Figure 4 and Figure 5. If we look at Figure 4 we can see the definition of a
module. We first have a line with the class name and the inheritance (Mdul eBase). The
definition of the ak signal follows after which we have the constructor. In this
constructor we add the Next () method to the a k. changed event. This means that when
the c k. changed event is called, the Next () method is run. The method First() is
overridden from ModuleBase and is run before the simulation starts. This is to make sure
that the event queue has some events before it starts, otherwise it will stop immediately.
In Figure 5 you can see there is no constructor, but a new definition has been added over
the Next () method, [Process(”a k”)]. This is called an attribute and is a C# native
construct. Attributes can be used to add Meta information to methods. The
ProcessAttribute marks the method as a process and the "a k” parameter tells the
simulator to try to connect this method to the change event of the signal c k. The two
methods are equivalent, but the indirect listening is the preferred one because it is simpler
to write and more visually pleasing. The last block in Figure 1 is the output writers. Two
main output formats are implemented in SystemDotNet, VCD (IEEE Std 1364-2001) and
CSV (Comma Separated Values). The VCD files can be opened in ModelSim or
GTKWave. The CSV files can be parsed using Excel or Matlab.

public class Clock : Mddul eBase

{
publ i c Signal <bool > d k = new Si gnal <bool >(); //d k signal
public Cl ock()

d k. Changed += new EnptyHandl er(Next); //Direct listening

}
public override void First()
{
Ak.Wite(true, 200);
}

public voi d Next ()

dk.Wite(!C k.Read(), 200):

Figure 4 Direct Listening

public class Clock : Modul eBase

{
publ i c Signal <bool > d k = new Si gnal <bool >(); //d k signal
public override void First()
{
Adk.Wite(true, 200);
}
[Process("C k")] //1ndirect listening
public voi d Next ()
{
Ak.Wite(!Cl k.Read(), 200);
}
}

Figure 5 Indirect Listening

Pipeline Simulation

A behavioral description of a pipeline analog to digital converter was created in
SystemDotNet. Pipeline converters are a popular architecture for analog to digital
conversion. This class of converters can suffer from mismatch during production that
leads to gain errors in multiplying stages of the converter. These gain errors (especially
from the first stage) reduce the signal to noise ratio of the converter significantly. Using
the web application the user can easily see how the signal to noise ratio changes as we
change the gain error. Figure 6 shows the user interface and the result for ideal pipeline
converter. Figure 7 shows the result for 10 % gain error in the first stage, we can clearly

see the degradation of the signal to noiseratio. The signal is the spike at SMHz.

Pipeline Converter

) . .. This is & simulation of a pipsline converter, You can control the gain error of the
Cinleiion: ©deal Q1% O10% 1 \lillring DAC in the first stags of the pipsling, and you can control the pipsline
resolution. The input signal, as you can see fram the FFT is around SMHz, There are

2~12 samples en each run.
Pipeline Resolution:

Ceeit @ssit O108it

Run

Clock cycles 4,1k 5 pipeout:0 - Power Spectral Densiy
[d8]
Simmlation Status:

Current time is 65706001,

Which translated into real time is
6, 570600E-002s . 50
Lt which point I've run 217665 events.

Had & maximum of 18 events at any timestep.
Aind & maximum of 2 timesteps in the cueue.

5
T am
£
7
=
150
s 5 10M 15M 20M 250 30M

[Hz]

Frequency

¥ral format | il format

Figure 6 Pipeline ADC converter Ideal

Pipeline Converter

) . .. Thisis a simulation of & pipeline converter. You can control the gain error of the
(e Gl Otdeal O1% ©10% 0iining DAC in the first stage of the pipeling, and o0 sn sontral the pipsline
resolution. The input signal, as you can see fram the FFT is around SMHz. There ars

2712 samples en each run.
Pipeline Resolution:

Oeet @spit O1osit

Run

Clock cycles 4,1k 0 pipeout:0-Power G pectral Densiy
[4]
Simulation status:

Current time is €5706001.

Which translated into real time is
6,570600E-002s. 50
At which point I've run 217665 events.

Had & waximum of 18 events at any timestep.
And a meximum of 2 timesteps in the gueue.

Magritude

-150

VZDHM Bbd 10 15M 200 i 300
[Hz]

Frequency

#ml format | Html format

Figure 7 Pipeline ADC converter 10% gain error first stage

References

[1] Lapalme, J.; Aboulhamid, E.M.; Nicolescu, G.; Charest, L.; Boyer, F.R;;
David, J.P.; Bois, G. “ .NET framework - a solution for the next generation tools
for systemlevel modeling and simulation”, Design, Automation and Test in

Europe Conference and Exhibition, 2004. Proceedings , Volume: 1, 16-20 Feb.
2004. Pages:732 - 733 Vol.1

